HOME WORK 2, PROBABILITY II. MARKOV CHAINS.

1. Show that a simple random walk on a graph is irreducible if and only if the graph is connected. (recall that a graph is called connected if for every pair of vertices x and y there exists a sequence of vertices v_{1}, \ldots, v_{k} such that $\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right),\left(v_{k}, y\right) \in \mathrm{E}$, where E is the set of edges.)
2. Let P be an irreducible transition matrix of period p. Show that Ω can be expressed as a disjoint union of p sets $\Omega_{1}, \ldots, \Omega_{p}$ so that $P(x, y)>0$ only if $x \in \Omega_{j}$ and $y \in \Omega_{j+1} \bmod p$, for some integer j between 1 and p.
3. Let $p \in(0,1)$. Suppose a gambler has k dollars, where k is a positive integer. They place a bet of $\$ 1$ with probability p every minute, and don't do anything with probability $1-p$. The gambler wins with probability $\frac{1}{2}$, and loses with the same probability. The gambler stops playing if either they run out of money, or they get n dollars, where $n \geq k$. Find the expected number of minutes the game will last.
4. Find the stationary distribution for the Ehrenfest chain.
5. Given a transition matrix of a Markov chain P on Ω, and a pair of distributions μ_{1} and μ_{2} on Ω, show that the total variation distance between $\mu_{1} P$ and $\mu_{2} P$ is less than or equal to the total variation distance between μ_{1} and μ_{2}.
6. There is a line at a grocery shop. Unless the line is empty, every second either a new customer arrives with probability α, or a customer is served with probability $1-\alpha$. If the line is empty, then a new customer still arrives with probability α, and with probability $1-\alpha$ nothing happens. Let X_{t} be the number of customers in the line at time t.
a) Depending on α, find whether X_{t} is positive recurrent, null recurrent or transient.
b) In the positive recurrent case, determine the stationary distribution.
c) In the positive recurrent case, find the expected time in which a customer is served after his or her arrival, provided that the arrival occurs when the distribution is stationary.
